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Small-scale transition in a plane mixing layer 
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An experimental study was conducted to investigate the generation process of 
random small-scale turbulence in an originally laminar mixing layer. The evolutions 
of the two types of deterministic structures, the spanwise and streamwise vortices, 
were first clarified in order to determine their roles in the transition process. A scaling 
rule for the streamwise distance from the trailing edge of the splitter plate to the 
vortex merging position was found for various velocity ratios. After this streamwise 
lengthscale was determined, it became clear that the spanwise wavelength of the 
streamwise vortices doubled after the merging of the spanwise structures which 
nominally doubled streamwise wavelengths. The most interesting finding was that 
the random small-scale eddies were produced by the interactions between the 
merging spanwise structures and the streamwise vortices. 

1. Introduction 
The mixing of fluids between two streams with different velocities is the major 

problem for mixing-layer research. The fluids in the two streams are first entrained 
into the shear region either by the merging of the coherent structures (Brown & 
Roshko 1974; Winant & Browand 1974) or by the three-dimensional evolution of 
asymmetric vortices (Ho & Gutmark 1987). Fine-scale mixing of the fluids then takes 
place a t  the convoluted interfaces. In  a shear layer with originally laminar flow, the 
mixing initially occurs a t  the folds of the spanwise structures and the streamwise 
vortices (Bernal & Roshko 1986) and increases to a much higher level a t  a certain 
streamwise region. Konrad (1976) observed the sudden increase of mixing in this 
region and called it mixing transition, as it is related to the generation of fine 
turbulent eddies (Sato 1960; Bradshaw 1966; Liu & Merkine 1976; Liu 1986). 

For technical applications, it is advantageous to be able to control the mixing 
process (Ho & Huerre 1984 ; Wygnanski & Petersen 1985). During the past few years, 
several effective techniques have been developed to manipulate the evolution of the 
coherent structures such that the entrainment of fluids into the shear layer is altered. 
For example, by applying active perturbations near the origin of the shear layer (Ho 
& Huang 1982 ; Oster & Wygnanski 1982 ; Fiedler & Mensing 1985 ; Lee & Reynolds 
1985), the spreading of the shear layer can be either suppressed or enhanced. Ho & 
Gutmark (1987) found a passive method to increase the entrainment by simply using 
an elliptic jet with a small aspect ratio. These methods mainly vary the amount of 
fluid engulfed into the shear layer and do not directly influence the small-scale 
mixing. 

For the purpose of being able to control the fine-scale mixing, we first must 
understand how the small random eddies in an originally laminar mixing layer are 
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generated. In  order to locate where the small eddies are first found in relation to the 
coherent structures, the lengthscales characterizing the evolutions of the streamwise 
and spanwise structures are identified. It then becomes clear that the small eddies are 
produced by the interaction of these two types of deterministic structures. Finally, 
the time-averaged turbulence properties are summarized in this paper. 

2. Experimental facility and technique 
2.1. Wind tunnel 

The experiments were conducted in an open loop wind tunnel. The detailed 
documentation of the wind tunnel and flow properties can be found in the paper by 
Browand & Latigo (1979) and Huang (1985). The stilling section of the wind tunnel 
is divided into two independent sections by a splitter plate. At the beginning of the 
test section, each stream has a cross-section of 30.5 cm high and 91.4 ern wide. In  
order to obtain different velocities in the two streams, a series of cloth meshes were 
added to the upper half of the settling section inlet to  produce the required pressure 
drop for a desired velocity difference. The velocity ratio is defined as R = A U / U  
where AU is (U, - U,) and 0 is the average velocity, $( U, + U,). For vortex merging 
and transition studies, velocity ratios were varied from 0.4 to 1.0. Most of the 
experiments were performed at R = 0.69, the high speed stream, U,, was 19.8 m/s 
and the low speed stream, U,, was 3.63 m/s. The flow was uniform across the span 
within 0.25% of the maximum velocity in either stream. The free-stream turbulence 
intensity, u'IAU, was approximately equal to 0.3 'Yo in the low-speed stream and less 
than 0.1 % in the high-speed stream. The boundary layers a t  the trailing edge of the 
splitter plate were laminar for both streams. 

2.2. Acoustic excitation 
Acoustic waves were applied to excite the shear layer. A unique design was used to 
introduce the sound into the flow. The last section of the splitter plate was a specially 
manufactured steel plate (Huang 1985), where milled inside was a wedge-shaped 
chamber. The acoustic waves were produced by a loudspeaker placed outside the 
wind tunnel and guided through a tube into the tip of the chamber. The waves 
emitted from a 0.5 mm wide spanwise slit into the low-speed side. The slit was 
located 8 em upstream from the trailing edge. The excitation wave modulated the 
boundary layer on the low-speed side. 

Two combined frequencies, the initial instability frequency, f,,, and the 
subharmonic, ifo, with the same amplitude were selected to  perturb the flow. A 
digital circuit designed by D. Plocher was used to generate the forcing signal. 
Through a power amplifier, the forcing signal drove the loudspeaker. The amplitude 
and the phase of the forcing across the span was checked using a in condenser 
microphone (Bruel & Kjaer type 4138) in the quiescent environment and they were 
uniform over 80% of the span (Huang 1985). 

2.3. Instruments and data processing 
The velocity measurements were obtained with an x-wire probe. The constant 
temperature hot-wire anemometer had a flat frequency response up to 30 kHz. The 
wire used was made of 10 'Yo rhodium-platinum wire, 0.0025 mm in diameter and 
about 1.5 mm in length. A generalized polynomial form for the two velocity 
components u and v and the wire output voltages was assumed. The ten coefficients 
were determined using a least-squares method to fit 30 data points of known 
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velocities and flow directions. The x-wire output was first recorded on a Hewlett 
Packard 14 channel tape recorder (type 39558) and then digitized by a PDP 11/55 
minicomputer (12 bit A/D converter). 

The fast Fourier transform (FFT) technique was used to compute the velocity 
power spectra. The conditional sampling technique was also employed to  define the 
contour of the vortical structures. The maximum entropy method (Burg 1967 ; Chen 
& Stegen 1974) was applied to estimate the wavelength of streamwise vortices. This 
method is powerful in determining the peak frequency when only a short piece of 
record is available. 

While the streamwise vorticity was calculated from the transverse velocity 
distributions, the running median method proposed by Tukey (1974) was used to  
smooth small-amplitude fluctuations caused by measurement inaccuracy. The 
method still retained the velocity jump which represented the vorticity. I n  the phase 
averaged case, the forcing signal was used as a phase reference. The error caused by 
the phase jitter was not significant, because the measuring station is still upstream 
from the phase de-correlation region (Zohar, Foss & Ho 1987). The inaccuracy of the 
vorticity measurements involved the calibration error of the velocity, the spatial 
resolution of the probe location and the phase jitter. The uncertainty of measuring 
one component of the streamwise vorticity was estimated to be about 10%. 

3. Evolution of the spanwise structures 
3.1. The ampli$cation of stability waves and vortex merging 

In a forced mixing-layer experiment performed in a low-Reynolds-number water 
channel, Ho & Huang (1982) identified the relationship between stability waves and 
vortices; the saturation of the fundamental corresponded to the roll-up of the vortex 
and the saturation of the subharmonic corresponded to the vortex merging. In  this 
study, we performed the same measurement in an unforced flow with a Reynolds 
number about two orders of magnitude higher than the 1982 experiment. At each 
streamwise location, spectra of the streamwise velocity fluctuations were measured 
at about twenty stations across the shear layer. The narrow band energy contents, 
E(u*( f ))) at the fundamental and the subharmonic were integrated along the 
transverse direction and offered an overall measure of the energy at the specific 
stability frequency. E ( u * ( f ) )  is defined as 

+m 

E[u*( f )] = L[ r%y dy (u* = u, v or w), 
280 -w 

where 8, is the initial momentum thickness of the high-speed side (see $6.1). The 
streamwise variations of E [ u ( f ) ]  are plotted in figure 1 .  The maximum level of the 
subharmonic occurred a t  about twice the distance downstream from the region where 
the fundamental saturated. The same measurement was carried out for the forced 
condition. The stability waves in the low-level forced mixing layer also reached their 
maximum value at  x = 4.5 cm (figure 1) .  The phase averaged vorticity contours 
(Huang 1985) did show that the initial vortex rolled up near x = 4.5 cm and the 
neighbouring vortices coalesced around x = 9 cm. This exercise again established the 
relationship of the stability waves and the vortex motion in unforced and forced 
high-Reynolds-number flows. 

16-2 
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FIGURE 1.  Energy content of u( f )  218. streamwise distance. For the forced case: x , 750 Hz =to; 
+, 375 Hz = ifo. For the unforced case: 0, 750 Hz; 0, 375 Hz. A, = 1.56 em. 

3.2. The streamwise lengthscale 
Vortical structures play a dominant role in the development of shear layers. They are 
responsible for mass entrainment (Winant & Browand 1974; Riley & Metcalfe 1980; 
Ho & Huang 1982) and momentum transfer (Browand & Ho 1983). If a non- 
dimensional lengthscale corresponding to  the streamwise evolution of the vortices, 
i.e. roll-up and coalescence, can be identified, it will be useful in understanding the 
dynamics of the flow. Both the roll-up and the coalescence of the vortices take place 
in a region, not at a single point. For convenience, we have suggested using the 
location where the stability waves reach their maximum level as the vortex merging 
position (Ho & Huang 1982). 

The vortex merging position varies with the operating conditions of the mixing 
layer. The important variables are the free-stream velocities, U, and U,, and the 
initial instability frequency, f,,. In  order to determine the scaling rule, the vortex 
merging positions need to be measured at many operating conditions. However, it is 
very tedious to obtain the stability amplification curves (figure 1)  or the vorticity 
contours. We bypassed this enormous data taking task by measuring the passage 
frequency of the vortices. A hot-wire probe was placed at the low-speed side and at 
four local momentum thicknesses away from the centreline of the mixing layer. The 
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FIQURE 2. Variation of the passage frequency with streamwise distance for the unforced case : 
R=0.69 ,  fr= 11.71m/s.A,=1.56cm. 

probe was outside the shear region and sensed the velocity fluctuations induced by 
the coherent structures but was not contaminated by the small-scale turbulence. 
Very near the trailing edge of the splitter plate, the velocity spectrum had a sharp 
peak which was the most amplified frequency. When the probe was moved 
downstream, the first subharmonic emerged from the noise. The subharmonic 
spectral intensity grew while the fundamental peak decayed with the streamwise 
distance. When the spectral intensity of the fundamental dropped one decade below 
that of the first subharmonic a t  x = 4.5 cm, the fundamental was not plotted. The 
same sequence was observed for the first and second subharmonics. The peak 
frequencies are shown in figure 2. After the first subharmonic dropping from the 
diagram a t  x = 9 cm, the spectrum became broadband. The peak of the spectrum 
decreased continuously with the distance. Comparison of figure 1 and figure 2 
indicates that the fundamental ended at  the first vortex merging position. After two 
vortices coalesce, it is reasonable to expect that the induced velocity of each single 
vortex is greatly reduced. So the end of the first subharmonic corresponds to the 
second vortex merging position. By applying this much simpler technique, the 
vortex merging positions for various velocity combinations were studied. For the 
purpose of establishing a streamwise lengthscale for the merging of coherent 
structures, we grouped the operating variables, U,,  U, and fo, into two parameters. 
One is the velocity ratio, R = AUlU, which is a measure of the ratio between the rates 
of deformation and advection. The other is the initial instability wavelength, A,, = 
U/f0 ,  which is a measure of the distance between the vortices. With the measured 
values of the vortex merging positions, x,, and the two parameters, the first vortex 
merging position was identified to be a t  xz = Rx,/ho = 4 and the second one a t  
x$ = 8 (figure 3). The finding of this lengthscale enabled us to relate the evolution of 
the streamwise 'vortices and the small-scale transition to  the coalescence of the 
spanwise structures. The same type of normalization was used for the streamwise 
coordinate, x, as x* = Rx/h,. According to the stability analysis (Monkewitz & 
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FIGURE 3. Non-dimensional vortex merging position w8. velocity ratio. 
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Huerre 1982), the ratio between the initial momentum thickness and the most 
amplified streamwise wavelength is almost constant, 0.034, for various velocity 
ratios. In  unforced flows, A, in the normalized x,x*, can be replaced by the initial 
momentum thickness and a proportional constant. When the flow is forced, however, 
the streamwise wavelength of perturbed coherent structures, A,, instead of the init)ial 
momentum thickness is the relevant lengthscale and should be used in normalization. 

4. Evolution of the streamwise vortices 
4.1. Initial development of the secondary structures 

In a plane mixing layer, the flow is not two-dimensional. Miksad (1972) reported non- 
uniformity in the spanwise direction. Konrad (1976) observed streamwise streaks. It 
was then identified that these streaks were counter-rotating vortex pairs (Breidenthal 
1981 ; Bernal 1981 ; Lasheras, Cho & Maxworthy 1986; Nygaard & Giezer 1988). 
Through elaborate visualizations, Bernal (1981) reconstructed the spatial con- 
figuration of the secondary vortices which are interlaced between the adjacent 
spanwise structures. 

In a natural mixing layer without artificial forcing, we investigated the initial 
stage of the vortices through the velocity fluctuations near the origin of the shear 
flow. In  the region near the trailing edge of the splitter plate, x* Q 4, the fluctuating 
velocities of a laminar shear flow are derived from the development of the 
deterministic structures. According to  the orientations of these structures, the 
amplifications of u and v are associated with the roll-up of the spanwise structures, 
whereas v and w grow with the formation of the streamwise vortices. Therefore, the 
spanwise velocity fluctuations, w, indicate the dcvclopmcnt of the streamwise 
vortices. The fluctuations are modulated by the passage of the spanwise structures. 
Hence the spectral content of w , E [ w ( f ) ] ,  is dominated by a peak at  the most 
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FIGURE 4. Energy content of w(f) vs. streamwise distance. for the forced case: 0, 750 Hz =f,. 
For the unforced case : 0, 750 Hz. 

amplified frequency in the initial region of the mixing layer. E[w(f)] is defined in 
equation (1) and its variation with distance is shown in figure 4. E[w(f)] can be 
detected close to the trailing edge of the splitter plate, x* < 1, and its magnitude 
amplifies exponentially with distance. Apparently, the secondary vortices develop 
together with the spanwise structures from the very beginning of the mixing layer. 

4.2. The spanwise distribution of mean velocity projiles 
The time-averaged streamwise velocity was measured along the spanwise direction. 
A long average time equalling two thousand vortex passage periods was used. The 
spanwise profiles (figure 5 )  were measured at the constant transverse locations where 
y/8 = 0. These profiles were not straight lines, instead they had clear wavy patterns. 
These patterns were caused by the streamwise counter-rotating vortex pairs. The 
vortices transferred the high- and low-speed fluids in the two streams across the 
interface and produced the wavy velocity profiles. Since these velocity distributions 
were obtained by a long time average, the existence of the wavy pattern implied that 
the streamwise vortices were localized in the wind tunnel. This result confirmed the 
finding by Jimenez (1983). As a matter of fact, we repeated the same measurements 
two months after taking the first set of data, and the peaks and valleys in the two 
profiles still matched. 
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FIQURE 5. Spanwise longitudinal mean velocity distributions us. streamwise distance. 
(a) The spanwise unforced case. (b)  The spanwise forced case. 

We also applied periodic disturbances along the trailing edge of the splitter plate. 
They were made of narrow Scotch tape blocks 3 mm wide, as thick as the boundary 
layer and separated by one spanwise wavelength of the streamwise vortices. Based 
upon the velocity profiles of the forced case (figure 5 b ) ,  the forcing could make the 
vortices only slightly more regular around the first merging region, x* = 4. At this 
high-Reynolds-number mixing layer, the three-dimensional forcing was not effective. 
For the rest of the experiment, no three-dimensional forcing was applied to the 
streamwise vortices. 

The deviation of the local mean velocity from the average speed, 0, increased with 
streamwise direction. A r.m.s. value defined as 

was used as an estimate of the cross-stream fluid transfer caused by the secondary 
vortices. U, for the unforced case is shown in figure 6. Upstream from the roll-up 
region of the spanwise structures, the deviation was small compared with the average 
speed and increased after x* = 2. 

An interesting feature can be observed in figure 6. The amplitude of the velocity 
deviation decayed slightly near the first and second vortex merging regions. This 
result indicated that the vortex merging process suppressed the activity of the 
streamwise vortices and made the mixing layer more two-dimensional. A similar 
feature can be observed in figure 4. The growth of E[w( f )] also decayed near the 
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FIUURE 7. Contours of constant aV(y, z)/& at z* = 2.0, normalized by maximum aU/ay = 3250 s-l. 
The solid lines are contours of positive streamwise vorticity and the dotted lines are negative 
streamwise vorticity. The contours are incremented by 0.07. y* = y/O, 0 is the local momentum 
thickness. 

formation of the spanwise structures, x* = 2, and after the first vortex merging. The 
reduction of three-dimensional motion around the saturation of the fundamental has 
been suggested by numerical studies (Corcos & Lin 1984; Metcalfe et al. 1987). In the 
simulation, the stretching in the braid which intensified the streamwise vortices was 
observed to reduce its level near the saturation of the fundamental. Hence, the 
growth of the three-dimensional secondary structures was slowed down. In 
experiment, the data further showed that the similar phenomenon occurred in the 
process of vortex merging. 

4.3. Vorticity of the secondary structures 
The streamwise vorticity was measured with a x-wire probe to survey the velocity 
components a t  two hundred stations in a plane normal to the mean flow direction. 
This area covered about one and a half wavelengths of the streamwise vortices in the 
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spanwise direction and eight momentum thickness of the mixing layer in the 
transverse direction. The streamwise location was chosen at x* = 2, where the 
spanwise structures had just rolled up. The streamwise vorticity is, 52, = 
aV/az-aW/ay. In  principle, V and W can be obtained by placing the x-wire probe in 
two orientations and the value of 52, can then be calculated. However, the accuracy 
is greatly decreased while several steps of subtraction are taking place. In  order to 
avoid this problem, we only measured one component of the vorticity, a,, = aV/az, 
which still could reveal the spatial structure of the streamwise vortices and offer an 
estimate of the streamwise vorticity. Figure 7 shows the time averaged 5 2 ,  and its 
value is normalized by the maximum aU/ay obtained a t  z = 0. The data indicated 
that the counter-rotating streamwise vortex pair had already formed at the roll-up 
position of the large structures. The streamwise vorticity was fairly strong and was 
about one-third that of the spanwise structures. 

The two-dimensional acoustic forcing was applied through the thin slit near the 
trailing edge of the splitter plate to organize the spanwise structures. The forcing 
signal also served as a phase reference for signal processing. The phase-averaged 
vorticity contours are presented in figure 8. By applying different time delays, we can 
obtain the streamwise vorticity contours in a plane normal to the free stream and at 
locations passing the braid or the core of the spanwise structures. When the plane 
cuts through the braid (figure 8a), there are two counter-rotating vortex cores, Four 
vortex cores were observed in figure 8(b) ,  as the sampling plane passes the spanwise 
structure. This set of data provided a quantitative base for supporting the 
streamwise vortex morphology constructed from visualization experiments (Bernal 
1981 ; Bernal & Roshko 1986). The maximum vorticity of the phase-averaged value 
was twice as large as the time-averaged streamwise vorticity and was almost equal 
to the maximum 3U/i3yY. These strong vortices produced large mean velocity 
perturbations along the span ; more than 10 Yo of the average speed has been detected 
(figure 5). 

4.4. Adjustment of the spanwise lengthscale 
The streamwise distance between the spanwise structures doubles after pairing. 
From the mean velocity profiles (figure 5), it is clear that the spanwise wavelength 
of the streamwise vortices also increases with downstream distance. The maximum 
entropy technique (Burg 1967; Chen & Stegen 1974) was used to determine the 
wavelength quantitatively. A few examples of the spectra a t  different downstream 
locations are shown in figure 9. The spectra had a dominant peak and several lower 
peaks. Near the origin of the mixing layer, the secondary vortices had short 
wavelengths. At downstream locations, a longer wavelength developed and became 
the dominating one (figure 9 b ) .  This process repeated in regions further downstream 
(figure 9c) .  The decaying of the vortices with short wavelengths after the adjustment 
was very slow. The peak of the initial wavelength could be detected from the 
spectrum even after the second vortex merging (figure 9c) .  This must be the reason 
why the apparent wavelength kept constant for a long distance in the flow 
visualizations (Konrad 1976 ; Bernal & Roshko 1986), however, the dominating 
spanwise wavelength has increased its value already. When the dominating spanwise 
wavelength, A,, was normalized with the local streamwise wavelength, A,, the value 
started at  1.5 and decreased with distance (figure 10). At the location where the 
streamwise vortices and the spanwise structures fully formed, x* = 2, the normalized 
wavelength, &/A,, reached an asymptotic value. This value, 2/3, kept constant after 
vortex merging. It indicated that the wavclength of the streamwise vortices adjusted 
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FIGURE 10. Ratio of the three-dimensional wavelength v8. the two-dimensional wavelength along 
the streamwise distance : A, unforced ; 0, forced ; -----, Pierrehumbert & Widnall (1982). 

itself with the varying streamwise wavelength. The ratio was about 2/3 and agreed 
well with Pierrehumbert & Widnall's (1982) calculations. The adjustment of the 
spanwise lengthscale with streamwise wavelength indicates that the formation of the 
streamwise vortices is an instability process. The primary vortices with a certain 
wavelength will select a preferred spanwise wavelength to support the secondary 
vortices. When the distance between the primary vortices doubles, the most 
amplified wavelength in the spanwise direction changes accordingly. In a numerical 
simulation (Zohar et al. 1988), linear broadband disturbances were used as initial 
conditions of the streamwise vortices, the amplification rates of these perturbations 
confirmed the adjustment of the most amplified wavelength band after each vortex 
merging. 
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FIQURE 11. Power spectra of longitudinal velocity fluctuation 
(a)  Z* = 2;  ( b )  Z* = 5 ;  (c) Z* = 8. 

5. Generation of random small eddies 
5.1. The role of spanwise structures 

For an initially laminar mixing layer, the spanwise structures and the streamwise 
structures were deterministic in nature. The flow eventually became turbulent a t  a 
certain downstream region, i.e. the random small-scale eddies appear and 
superimpose on the deterministic structures. In the laminar region, the spectrum had 
well-defined narrow peaks which represent the most amplified frequency of the 
instability waves or the structures (figure I l a ) .  Further downstream, a roll-off 
exponent a t  the frequency range one decade higher than the local vortex passage 
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a t  y* = 0:  
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FIGURE 12. Roll-off exponent of power spectra 'UY. non;ddimensional Btreamwise distance in wind 
tunnel tests. x ,  R = 0.45, D = 10.2 m/s; A, R = 0.50, U = 10.2 m/s; +, R = 0.69, 17 = 10.2 m/s; 
A , R = 1 . 0 0 .  ~ = 1 2 . 0 m / s ; V , R = 1 . 0 0 , ~ = 1 2 . 5 m / s ( J i m e n e z e t a E .  1 9 7 9 ) ; V , R = 1 . 0 0 , 0 =  
8.2 m/s (Jimenez et al. 1979) .  

frequency could be defined (figure 11 b ) .  The roll-off exponent, n, increased its value 
with streamwise distance and finally reached the asymptotic value of -! which 
showed the establishment of an inertial sub-range by the presence of small eddies 
(figure l l c ) .  Furthermore, it was found that the roll-off exponents were not very 
sensitive to transverse locations inside the shear region (Jimenez, Martinez-Val & 
Rebollo 1979). If the roll-off exponent was plotted as a function of streamwise 
distance, the value started at -4  and increased to  -g in a short distance (figure 12). 
This region of abrupt change varied with the operating conditions, i.e. the velocity 
ratio and the mean velocity. It was interesting to  note that the regions of a sudden 
jump of n could be collapsed into the non-dimensional streamwise distance, x* = 

Rx/A. Around the first vortex merging region, x* = 4, the roll-off exponent was 
about 4. This was produced by the folds of the spanwise structures (Lesieur et al. 
1988). These folds produced structures much smaller than the large spanwise 
structures, but these small structures were two-dimensional not three-dimensional 
random eddies. At x* = 8, the asymptotic value of -$ was reached and the flow 
became turbulent around this region (Ho & Huerre 1984). This collapse of data 
was significant because it indicated that the small-scale transition was correlated to 
the merging of the spanwise coherent structures. In other words, the process of 
vortex merging shifted energy from the spectral peak to both the high frequency, fine 
eddies, and the low frequency subharmonic regimes. 

5.2.  The role of the Reynolds number 
Coherent structures originate from the inviscid instability and are not Reynolds- 
number dependent. However, the small eddies cannot exist in low-Reynolds-number 
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FIGURE 13. Roll-off exponent of power spectra us. non-dimensional streamwise distance in 
water channel tests, R = 0.31 (Jimenez et al. 1979). 

flows, because the high viscous dissipation will smooth out the sharp velocity 
gradient and eliminate the fine-scale turbulence, Therefore, the local Reynolds 
number must be high enough in order to experience the small-scale transition. I n  the 
present experiment, the Reynolds number based on the local maximum vorticity 
thickness, Re = D6(x)/v, at x* = 8 varied in a range of 1300~19000.  It is clear that 
there is no definite threshold Reynolds number for transition. The vortex merging 
will trigger the mixing transition whenever the local Reynolds number is high 
enough. 

In the present wind tunnel test, the Reynolds number based upon the initial 
vorticity thickness is in the order of 2000 which is about two orders of magnitude 
higher than that of a typical water channel test. Hence, it is expected that the small- 
scale transition in water facilities will occur further downstream in order to achieve 
a high local Reynolds number. As a matter of fact, we rescaled the water channel 
experiments by Jimenez et al. (1979). The sharp rise of the roll-off exponent was still 
scaled with the vortex merging locations, but was delayed to between the second and 
third vortex merging regions (figure 13). 

5.3. The role of streamwise vortices 
Very revealing measurements were made at the location of x* = 3.85 where the 
beginning of the small-scale transition occurred. The flow was not fully contaminated 
by the random eddies at this point. The measurements were performed by placing 
five hot-wires in the spanwise direction. Two of them were situated in the cores of the 
streamwise vortices. The others were located between the streamwise vortices (figure 
14). The velocity traces of these three probes were regular and periodic. The velocity 
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t W )  * 
FIGURE 14. Hot-wire traces of u' at five spanwise locations: (a) z = -0.8 cm; ( b )  z = -0.2 cm; 

(c) z = 0.3 cm; (d )  z = 0.6 cm; (e) z = 1.2 cm and y* = - 1, z* = 3.85. 

traces measured at the cores of the streamwise vortices were distinctly different. 
High-frequency random velocity fluctuations had been observed. In other words, 
fine-scale turbulence was first found in the cores of the streamwise vortices at  the 
point where the spanwise structures rolled around and coalesced. Hsiao (1985) found 
that the high-frequency fluctuations had a preferred frequency which could be 
associated with a higher-order instability of the streamwise vortices. Robinson & 
Saffman (1984) found that a vortex subjected to contraction strain field became 
unstable. Based upon the data (figures 12 and 14), we speculate that the small-scale 
transition is produced by the strain field of the merging vortices imposed on the 
streamwise vortices, the strained streamwise vortices were unstable and originated 
the random fine-scale turbulence. 

5.4. The peak-valley-counting (PVC) technique 
In order to provide a quantitative measure of the small-scale turbulence, we 
developed a technique to determine the location and the instant of occurrence of the 
fine-scale velocity fluctuations. The velocity traces consist of low-frequency high- 
amplitude fluctuations representing the passage of the coherent structures and high- 
frequency perturbations (figure 15). First we removed the d.c. component and 
amplified the signal to make sure that the low-amplitude fluctuations stayed above 
the bit noise of the analogue to digital converter. We then located the local peak and 
registered the instant by a pulse when the low-frequency portion was negative. If the 
low-frequency signal was above zero, the instant of occurrence of a local valley was 
registered by a pulse. By using this method, the local maximum or minimum 
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FIQURE 15. Schematic illustration of peak-valley-counting (PVC) method. 
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FIGURE 16. Spanwise distribution of N ,  solid line, and the normalized laV/az(, dashed line, at 
z* = 3.85 and (a) y* = 1 ; ( b )  y* = - 1 ; (c) y* = -2. 

contributed by the coherent structure was not registered. This was especially 
important at  the region of initial transition, because only a few high-frequency 
fluctuations occurred during each period of the coherent structures. If the PVC 
technique was not used, a significant part of the pulses would have been contributed 
by the passing coherent structures. Further downstream where the small eddies were 
abundant, the results of the PVC method were not much different from the 
techniques of locating the local extremes. 
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FIGURE 17. Phase average (N> over a period a t  x* = 3.85 and z = -0.5 cm. The dotted 
lines indicate the relative position of the spanwise structures. 

A measure of how frequently small eddies occur a t  an instant is defined as 

i s  

S+cc S n=l 
(N($)> = lim - I(++nT), 

where 

( ) denotes phase averaging, + the phase angle in one vortex pawing period, 
X the number of samples, 7’ the local vortex passing period, 

The total number of small eddies in one vortex passing period is 

I (  ) a delta 
function. 

N = loT (“4))  w .  

5.5. The initial occurrence of small eddies 

(3) 

(4) 

By using the PVC technique to  survey the flow both in the (5, y)- and (y, %)-planes, 
we could obtain the concentration of the small eddies in relation to  the spanwise and 
the streamwise structures. 

At the initial transition region, x* = 3.85, one component of the time-averaged 
streamwise vorticity, Q,. = aV/az, is plotted in figure 16. The peaks indicated the 
core positions of the streamwise vortices. The values of N were also measured. The 
locations of the peaks of these two curves more or less coincided. This figure provided 
a quantitative support to the observation of the raw data (figure 14) that the random 
fine eddies are first detected in the cores of the streamwise vortices. 

With the help of the phase-reference from the two-dimensional forcing signal, we 
can construct the phase-averaged spanwise vorticity contours in the ( t ,  y*)-plane 
(dashed-lines in figure 17). By multiplying the average speed with t ,  the time axis is 
transferred to the pseudo x-axis. The phase average, (N), was plotted along with 
the vorticity contours (the shaded area in figure 17). The data indicated that the fine 
eddies were detected more frequently at the high-speed side. 
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FIGURE 18. Profiles of mean streamwise velocity. A, Unforced case; 0,  forced case. 

6. Time-averaged flow properties 
In this study, velocity ratios and free-stream velocities were varied over a wide 

range. One of the operating conditions, U, = 19.8 m/s and U, = 3.63 m/s, was 
frequently used for several specific tests. The properties of this flow were measured 
at mid-span, z = 0, and are discussed here. 

6.1. Mean velocity lrrofiles 
The velocity profile measured at  the trailing edge of the splitter plate reflected a 
combination of the wake and the mixing layer. Several lengthscales existed in this 
type of velocity distribution. Though the wake disappeared within one instability 
wavelength, the choice of the proper lengthscale was critical in understanding the 
instability. Zhang, Ho & Monkewitz (1985) examined the stability of a mixing layer 
forced by the fundamental and subharmonic with different phase angles. They 
determined that the appropriate initial lengthscale was the thickness of the high- 
speed shear because it represented most of the vorticity. In the present case, the 
initial momentum thickness of the high speed shear, 8,, was 0.95 mm. The measured 
instability frequency was 750 Hz. Based upon these two values, the Strouhal 
number, 27@9,/0, was 0.216. This value was close to the stability analysis result 
based on the tanh profile (Monkewitz & Huerre 1982). 

The wake vanished near x* = 0.8 and the mean streamwise velocity distribution 
became a tanh profile (figure 18). The definition of the momentum thickness is not 
ambiguous and is defined as 

I f+w 
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FIGURE 19. Variation of momentum thickness with streamwise distance. 
A, Unforced case ; 0,  forced case. 
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FIGURE 20. Profiles of transverse mean velocity. A, Unforced case; 0, forced case. 
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FIGURE 21. Profiles of lateral mean velocity. A, Unforced case; 0,  forced case. 

The ordinate was normalized with the local momentum thickness. It should be noted 
that the vorticity thickness, 6 = AU/(aU/ay)max, was four times the momentum 
thickness when the flow was laminar and followed the tanh profile (figure 18a). The 
ratio of the vorticity thickness to the momentum thickness increased with distance 
and reached 5 when the flow became turbulent (figure 18e). 

The spreading of the mixing layer is shown in figure 19. In  the unforced case, the 
spreading rate was very slow initially and then increased around x* = 2 where the 
instability waves rolled up into vortices. A greater spreading rate was observed near 
the vortex merging region, 3 < x* < 5. Downstream from this region, the flow 
started to transition into turbulence and the spreading rate decreased slightly as well 
as achieved linear growth. The growth of the forced mixing layer was very different 
from the natural one, it followed the same pattern as was observed in the forced low- 
Reynolds-number flow (Ho & Huang 1982). Two plateaus, one at the roll-up region 
and the other at  the vortex merging region, existed. The spreading after the second 
plateau was not quite but close to linear growth, because the second vortex merging 
location was still more or less localized by the forcing. The Strouhal numbers based 
upon the local passage frequency and the local thickness at  the two plateaus were 
0.45, which was close to the neutrally stable frequency. This justified the 
subharmonic evolution model proposed by Ho (1982). 

The time averaged transverse velocity, V ,  and the lateral velocity, W ,  are 
presented in figures 20 and 21. The maximum values of both velocity components 
were about 5% of the velocity difference, AU. Their difference between the forced 
and unforced cases were not appreciable near the initial region of the mixing layer 
(figures 20a and 2 i a )  and in the turbulent region (figures 20e and 21 e). In the vortex 
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FIGURE 23. Distribution of v’/AU. A, Unforced case; 0, forced case. 
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FIGURE 25. Distribution of u"/(AU)'. A, Unforced case; 0, forced case. 



FIGURE 26. Distribution of A, Unforced case; 0,  forced case. 

merging region, the transverse velocity in the forced situation was higher than that 
in the unforced case (figure 20a-c), this was a reflection of the high spreading rate for 
localized vortex merging. The streamwise vortices were localized in the wind tunnel 
and therefore the time-averaged lateral velocity was non-zero. Under the forced 
condition, the localized spanwise and streamwise structures produced a dip at y* = 
2 (figure 21 b, c). In the natural case, the phase jitter smeared the detailed feature. 

6.2. Fluctuating quantities 
The streamwise velocity fluctuations initially had a double peak distribution (figure 
22a) and then evolved into a bell-shaped profile (figure 22). The maximum value 
reached about 20 YO of AU at downstream locations. The fluctuation levels of forced 
flow in the vortex merging region were slightly higher than that in the unforced case. 
The spanwise and lateral fluctuating velocities had about the same turbulence levels 
and were similar to the fluctuating streamwise component (figures 23 and 24). 

The maximum Reynolds stress, a, occurred slightly below the centre of the 
mixing layer and was about 1 YO of ( A Q 2  (figure 25). A small region of negative values 
(figure 25b, d) was found at the end of the two plateaus (figure 19). The negative 
Reynolds stress was due to vortex nutation (Browand & Ho 1983), but it was not as 
pronounced as that in the strongly forced mixing layer (Oster & Wygnanski 1982). 
The distributions of the other Reynolds stress component, u’w’, are shown in figure 
26. A dip of the profile was observed at  y* = 1.5 for the forced condition (figure 26b, 
c). A dip in the mean lateral velocity profile was also found a t  about the same position 
(figure 21). Negative Reynolds stress regions were also observed in this figure, but it 
must be produced by a certain orientation of the streamwise vortices rather than by 
the spanwise vortex nutation. 

- 
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7. Conclusions 
In a subsonic plane mixing layer, vortex merging is the major mechanism to 

transfer mass and momentum across the two streams. Vortex merging also increased 
the wavelengths of the spanwise structures and the streamwise vortices, but the ratio 
of the two lengthscales was found to be a constant. We further found that the 
random fine eddies were produced by the interactions of the merging spanwise 
structures and the streamwise vortices. Therefore, the vortex merging process not 
only transfers the energy to the subharmonic range, but also shifts the energy to the 
high- frequency end. 

This work is supported by a contract from the Office of Naval Research. 
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